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Abstract
A self-avoiding walk adsorbing on a line in the square lattice, and on a plane
in the cubic lattice, is studied numerically as a model of an adsorbing polymer
in dilute solution. The walk is simulated by a multiple Markov chain Monte
Carlo implementation of the pivot algorithm for self-avoiding walks. Vertices
in the walk that are visits in the adsorbing line or plane are weighted by eβ . The
critical value of β, where the walk adsorbs on the adsorbing line or adsorbing
plane, is determined by considering energy ratios and approximations to the
free energy. We determine that the critical values of β are

βc =
{

0.565 ± 0.010 in the square lattice

0.288 ± 0.020 in the cubic lattice.

In addition, the value of the crossover exponent is determined:

φ =
{

0.501 ± 0.015 in the square lattice

0.5005 ± 0.0036 in the cubic lattice.

Metric quantities, including the mean square radius of gyration, are also
considered, as well as rescaling of the specific heat and free energy, as the
critical point is approached.

PACS numbers: 82.35.Lr, 82.35.Gb, 61.25.Hq

1. Introduction

The interacting self-avoiding walk in the square and cubic lattice is a standard model of
interacting polymers [7, 11, 12]. Polymer collapse has been modelled by walks with a
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(a) (b)

Figure 1. (a) A square lattice self-avoiding walk. (b) An adsorbing self-avoiding walk with seven
vertices (visits) in the line y = 0. Six visits are denoted by • while the first vertex is always a visit
(denoted by ◦).

two-body interaction between vertices [5], while adsorbing polymers are modelled by walks
with a one-body interaction: vertices in such a walk interact independently with an adsorbing
interface [6]. The scaling theory of these thermodynamic phenomena has also been considered
[7], and it is rather well understood. A brief description, relevant to this paper, is presented in
section 2.

A polymer confined to one side of an interface can be modelled in two dimensions by a
self-avoiding walk in the square lattice above the line y = 0. We may extend the model to
include an adsorption interaction by fixing the first vertex of the walk to be at the origin of
the lattice and then weighing the conformation according to the number of vertices in the line
y = 0. See figure 1.

In this discrete lattice model, the most important quantity is cn(v); the number of walks
from the origin, confined to the half-space y � 0, and with v vertices in the adsorbing line
y = 0. This model generalizes to three dimensions by replacing the square lattice with the
cubic lattice and the adsorbing line by the plane z = 0; the walks start at the origin and are
confined to the half-space z � 0.

Lattice models of polymers are combinatorial in nature, all questions could be answered
if cn(v) could be determined (that is, by counting all such walks of length n with v visits).
In that event, the model can be solved and this will provide information on the polymer
adsorption problem. Unfortunately, the non-Markovian character of these models means that
most standard combinatorial tools are not applicable and, despite a great deal of effort, they
remain unsolved. Some progress has been made in two and in three dimensions in [15].
Further results were obtained in [18] for an ensemble of collapsing and adsorbing walks; see
also [38, 39]. Numerical studies of these models have been performed [17, 40] as well. Of
primary interest in all these studies are the location of the adsorption critical point, and the
values of (thermodynamic) critical exponents associated with the adsorption phase transition.
In particular, numerical efforts to determine the crossover exponent φ in these models can be
found in the literature [17] (this exponent describes rescaling in the model as the critical point
is approached).

The thermodynamic description of adsorbing walks is based on the partition function
defined by

Zn(β) =
n∑

n=1

cn(v) eβv. (1)

The usual definition of the free energy is

Fn(β) = log Zn(β). (2)
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The function Zn(β) is a polynomial in eβ and is analytic, so that Fn(β) is also analytic. The
model is interesting in the n → ∞ limit, where the existence of the (normalized) limiting free
energy

F(β) = lim
n→∞

1

n
log Zn(β) (3)

can be demonstrated using techniques due to Hammersley et al [15]. It is known that F(β)

is a convex function and is differentiable almost everywhere. In addition, there is a constant
µd such that

F(β)

{
= log µd if β � βc

> log µd if β > βc.
(4)

Hence, F(β) is non-analytic at the point βc.
The growth constant of self-avoiding walks on the d-dimensional hyper-cubic lattice is

µd [13]. It has been determined to high accuracy by Monte Carlo and series analysis in two
and three dimensions [20, 25, 35]. The best estimates are due to series enumeration studies

µ2 = 2.638 158 529 27(1) see [20]

µ3 = 4.684 04(9) see [25].
(5)

Since the density of visits (or the energy) is the derivative of F(β), it follows that βc is the
critical adsorption point: for β < βc, the density of visits is zero; for β > βc, it is strictly
positive.

It is known that βc > 1 [15], and this bound has been improved to

2 log µ2 � βc � log
√

1 + µ−2
2 in two dimensions [18]. (6)

This shows that

1.940 162 . . . � βc � 0.067 125 . . . in two dimensions (7)

and these are the best mathematically rigorous bounds in two dimensions. Otherwise, it is
known that

log(µd/µd−1) � βc � log
√

1 + µ−2
d in d dimensions [18]. (8)

Numerically, this gives the bounds

0.574 079 . . . � βc � 0.022 285 . . . in three dimensions. (9)

The critical point βc has been determined ‘exactly’ in the honeycomb lattice (βc =
log

√
1 +

√
2), but this is not a rigorous result [1].

In this paper we examine adsorbing walks in the square and cubic lattices numerically.
Recent insights in models of walks produced a method for determining estimates of the free
energy of interacting models of walks and trees using canonical Monte Carlo techniques [35].
We use this technique to study the free energy of adsorbing walks, and then to estimate the
location of the critical point and to examine thermodynamic rescaling as the critical point is
approached.

In section 2 we give a brief review of the essential statistical mechanics and
thermodynamics of adsorbing walks in terms of tricritical scaling theory [23]. In particular, we
introduce scaling assumptions for the free energy and discuss the role of critical exponents in
rescaling the model as the critical point is approached. The hypothesis that the critical point in
the (general grand canonical) phase diagram is of a tricritical nature has certain consequences;
for example, it implies the existence of a crossover exponent, φ, that describes how the model
rescales as the critical point is approached from different directions.
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In section 3 we describe the numerical techniques used to generate and analyse data. We
then investigate the scaling of the free energy and the specific heat under the tricritical scaling
hypothesis in two and three dimensions in sections 3.1 and 3.3. The crossover exponent is
best determined from energy ratios. Our best estimates are

φ = 0.501 ± 0.015 in two dimensions (10)

φ = 0.5005 ± 0.0036 in three dimensions. (11)

The error bars are 95% statistical confidence intervals. These results strongly support the
notion that φ = 1/2 in two and three dimensions in the polymer adsorption problem. The
critical adsorption points are best determined by analysing energy ratios, the free energy and
the specific heat. These analyses give our best estimates for the critical value of β:

βc = 0.565 ± 0.010 in two dimensions (12)

βc = 0.288 ± 0.020 in three dimensions (13)

with stated 95% statistical confidence intervals. These results are consistent with the bounds
stated above, and also with estimates of βc from quantities such as the specific heat and metric
data (such as mean square radius of gyration).

Observe that these estimates are in particular for the model in this paper, where vertices
interact with the adsorbing plane. A slightly different model has edges that interact with the
adsorbing plane, forming edge-visits when they adsorb. The location of the critical points in
that model is expected to be different from the estimates above, but one would expect to find
the same values for the thermodynamic exponents, including φ.

As a by-product we also determined the growth constant for walks in two and three
dimensions, consistent with the results in [35]

µ2 = 2.635 ± 0.002 (14)

µ3 = 4.670 ± 0.014. (15)

These estimates were obtained by analysing the limiting free energy estimates directly, and
is consistent with estimates in the literature, as we observe elsewhere in this paper. These
estimates are not of high accuracy, but it is interesting that they were made by using a canonical
Monte Carlo simulation, exploiting the techniques developed in [35].

Finally, we examined the effect of the adsorption transition on metric quantities of the
model. We analyse the mean square radius of gyration and mean span (the span is the average
side length of the smallest box containing the walk) to determine the metric exponent ν as a
function of β. In both the two- and three-dimensional models the results are consistent with
a transition at β = βc, as indicated by the thermodynamic properties. We conclude the paper
with comments in section 4.

2. Thermodynamics of adsorbing walks

The thermodynamic properties of adsorbing walks are described by making general
assumptions that the free energy and partition function of the model are described by tricritical
scaling [23] in the vicinity of the critical adsorption point. In particular, define τ = β − βc,
then the (finite) size free energy is a function of the rescaled variable nφτ , where φ is the
crossover exponent which determines the crossover in rescaling as n → ∞.

The phase transition at τ = 0 is the adsorption transition, and it corresponds to a non-
analytic point in F(β). The behaviour close to this point is described by the specific heat
exponent α. It is thought that

F(β) ∼ τ 2−α as β → β+
c . (16)
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Thus, the finite size free energy is assumed to scale as

Fn(β)

{
∼C0 if β � βc

∼C0τ
2−αf (nφτ) if β > βc

(17)

where C0 is a constant. It is known that Fn(0) → log µ as n → ∞, where µ is the growth
constant (see, for example, Madras and Slade [28]). Thus, one may put C0 = log µd in the
above. Taking two derivatives of Fn(β) with respect to τ shows that the specific heat should
scale as

Cn(β) = d2

dτ 2
Fn(β) ∼ τ−αg(nφτ) for τ > 0 (18)

for some unknown scaling function g(x). Thus α describes the singularity in the specific heat
at the critical point when approached from the adsorbed phase.

For τ > 0 the expression for Fn(β) can be written as

Fn(β) ∼ C0n
−φ(2−α)(nφτ)2−αf (nφτ) = n−φ(2−α)h(nφτ) (19)

where h(x) is some unknown scaling function. Thus, Fn(β) = [log Zn(β)]/n is a product
of a power of n, and a function h(nφτ) of the rescaled variable nφτ . More general scaling
arguments (see, for example, [8]) can now be used to show that the crossover exponent φ, and
the specific heat exponent α, are related by a hyperscaling relation

2 − α = 1

φ
. (20)

Hence, the finite size free energy has the scaling form

Fn(β) ∼ n−φ(2−α)h(nφτ) ∼ n−1h(nφτ) (21)

for some unknown scaling function h(x).
In a previous paper [35] a statistic on self-avoiding walks called the atmosphere was

defined. The atmosphere of a walk with first vertex at the origin is composed of the edges that
can be added to its last vertex to increase its length by one step. This concept is abused by
calling the number of such atmospheric edges also the atmosphere of the walk. For example,
the walk in figure 1(a) has atmosphere of size two edges, and the walk in figure 1(b) has
atmosphere of size three edges.

If the number of walks of n steps from the origin in the hypercubic lattice is cn, then it can
be shown that the mean size of atmospheres of walks of length n is equal to cn+1/cn [35]. It is
not known that the limit limn→∞[cn+1/cn] exists, but the Kesten pattern theorem has been used
to prove that limn→∞[cn+2/cn] = µ2

d [21, 22]. Together with the numerical evidence in [35],
this strongly suggests that limn→∞[cn+1/cn] = µd . In other words, that the mean atmosphere
converges with increasing n to the growth constant.

In this paper we generalize these notions to the model of adsorbing walks. The atmosphere
of a walk attached to an adsorbing line or plane at its first vertex is the weighted sum over the
edges that may be added to the last vertex to increase with length of the walk by one step. The
additional edge is weighted by β if its addition generates one more visits, otherwise it carries
weight 1. The mean atmosphere is the average over the atmospheres of all possible walks, and
is denoted by An(β). In this case An(β) is a linear function of β. One may consider instead the
mean (extended) atmospheres by adding two, or three, or more, edges appropriately weighted
to walks. Denote An(β; i) to be the extended atmosphere if i weighted edges are appended to
the walk. It is not difficult to show that

An(β; i) = Zn+i (β)

Zn(β)
. (22)
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As with the ratio cn+i/cn it is not generally known that the limit limn→∞ An(β; i) exists.
Generalization of the techniques used for cn+2/cn for example do give some partial results, at
least for i = 2 and for β < βc.

The scaling of the atmospheric statistic An(β; i) can be examined by considering the
scaling of the partition function. It is generally believed that

Zn(β) = Bµnτ 1/φ

β nαt−3λ(nτ 1/φ)α+−αt (23)

where αt and α+ are critical exponents (and α is the specific heat exponent), and where λ(x)

is an unknown function. The function µβ is directly related to the limiting free energy; for
example, if we take the logarithm of equation (23), divide by n and then taking n → ∞, then

F(β) = lim
n→∞

1

n
log Zn(β) = τ 1/φ log µβ if τ > 0. (24)

This should be compared with equation (17) via the hyperscaling relation in equation (20).
Consider the ratio of the scaling expression in equation (23) for n + i and for n. If

reasonable assumptions are made for the exponents α+ and αt , and if it is assumed that the
function λ(x) is dominated by the exponential growth of µnτ 1/φ

β , then as n → ∞, one obtains

logAn(β; i) ∼ iτ 1/φ log µβ + (αt − 3) log[(n + i)/n] + (α+ − αt ) log

[
λ((n + i)τ 1/φ)

λ(nτ 1/φ)

]
.

(25)

Taking n → ∞ while considering equation (24) then indicates that the following limit:

lim
n→∞ logAn(β; i) = iF(β) (26)

may exist. In other words, by considering the atmosphere statistic one may estimate the free
energy directly as n → ∞.

Therefore, one may define the functions

fn(β) = logAn(β) (27)

as approximations to F(β). Moreover, by considering the results and assumptions in
equations (17) and (24), the behaviour of fn(β) should be approximated by

fn(β) ≈ log µd + Cθ(β − βn) |β − βn|1/φ + Dnβ
� (28)

where θ(t) = 1 if t > 0 and θ(t) = 0 otherwise, and where Dnβ
� is an unknown background

correction term that should become insignificant as n → ∞. The number βn is an estimate of
βc, and one would expect that βn → βc as n → ∞.

3. Numerical results

We generated adsorbing self-avoiding walks on the square and cubic lattices. In both cases
the walks started at the origin and were confined to the positive half-lattice bounded by the
adsorbing line in two dimensions (the x-axis) and the adsorbing plane in three dimensions (the
xy-plane). The walks were sampled along a Markov chain by a Metropolis implementation
[14] of the pivot algorithm for self-avoiding walks [29]. A multiple Markov chain Monte Carlo
technique ([9], see also [36]) was used to sample along 10 chains spaced in the adsorption
activity β. In two dimensions, the activity β of the chains was spaced in the interval [0, 1] and
in three dimensions it was spaced in [0, 0.6].

The adjacent chains in the simulation were switched by attempting a swap between
two randomly selected chain once every 250 attempted elementary Monte Carlo iterations of
the underlying pivot algorithm. Each chain was then iterated for 500 000 × 250 times while
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Table 1. Intersections of energy ratios in two dimensions.

Ratio 1 Ratio 2 βc φ

70/40 20/10 0.5735 0.5021
80/40 30/20 0.5705 0.4965
90/30 40/20 0.5745 0.5044
90/50 50/30 0.5690 0.4890

100/50 60/30 0.5770 0.5118

data were collected every 250 attempted iterations for a total of 500 000 data points for every
chain.

The data were analysed by computing weighted averages to interpolate between adjacent
chains, and confidence intervals were estimated by computing autocorrelation times of the
resulting time series; for details, see Beretti and Sokal [2]. Data were collected in two
dimensions for walks of lengths n = 10 to n = 100, but the simulations did not converge well
for walks of lengths greater than 100. In three dimensions data were collected for walks of
lengths n = 10 to n = 120, first in steps of 10 to n = 100, and thereafter for n = 120. Overall,
the algorithms performed better in three dimensions; it is a feature of the pivot algorithm that
it is more efficient in higher dimensions as the self-avoiding constraint has a smaller effect on
the walks.

The main objective of the numerical work is to estimate the location of the critical point
and the value of the crossover exponent, φ. It is widely thought that φ = 1/2, and this will
be verified for walks in two and three dimensions. Attempts to estimate φ from the estimated
values of fn(β) and from estimated specific heats were not very successful. However, the
ratios of energies (the average number of visits) produce very accurate estimates of both βc

and of φ, this technique was first developed in [41].

3.1. Adsorbing walks in two dimensions

Energy. The mean number of visits, or energy, is given by the first derivative of the free energy
to β (or equivalently, to τ ). If it is assumed that the hyperscaling relation in equation (20) is
valid, then it follows from equation (21) that

〈Vn〉 = n
∂Fn(τ)

∂τ
∼ n1+φ+φ(α−2)h′(nφτ) ∼ nφh′(nφτ) (29)

where 〈Vn〉 is the mean number of visits (or the total energy of the walk). At β = βc, this
shows that

〈Vn〉|τ=0 = nφg′(0). (30)

Of significance are the ratios
〈Vm〉
〈Vn〉 =

(m

n

)φ

where τ = 0. (31)

If one chooses values for m and n, then at β = βc the energy ratios are all equal to (m/n)φ .
Thus, both the crossover exponent φ and the critical adsorbing activity βc may be determined
by plotting (for example) log(〈Vm〉/〈Vn〉)/ log(m/n) against β. All the curves should intersect
at the point (βc, φ).

In figure 2 the energy ratios are plotted for (m, n) equal to (100, 50), (80, 40), (60, 30)
and (40, 20). The data can be interpolated to curves that all mutually intersect close to
(0.57, 0.50). Including other ratios in our analysis gives the results in table 1.
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0.5500 0.5563 0.5626 0.5689 0.5752 0.5815 0.5878 0.5941

β

0.420

0.452

0.484

0.516

0.548

0.580

log
〈V2n 〉
〈Vn 〉

log 2

Figure 2. Plots of log(
〈Vm〉
〈Vn〉 )/ log(m/n) against β. These data can be interpolated to intersect close

to (0.57, 0.5), and best estimates for (βc, φ) can be determined by analysing the intersections. In
this graph, the values of (m, n) were chosen as (100, 50), (80, 40), (60, 30) and (40, 20). More
data were not shown for clarity.

There appears to be no dependence of βc and φ in table 1 with increasing n or m. If
we treat simulations at different values of n as independent, then we can take averages of the
results to determine our best estimates for βc and φ. This gives

βc = 0.5729 ± 0.0058 (32)

φ = 0.501 ± 0.015 (33)

where the error bars are 95% statistical confidence intervals. This measurement only
determines φ up to assuming hyperscaling, but βc is determined to great accuracy. The
estimates in table 1 also appear to be independent of or insensitive to n, and this indicates that
corrections to scaling have largely been cancelled in the ratio of the energies.

Specific heat. The traditional methods for determining φ and βc from Monte Carlo data involve
the numerical analysis of the specific heat data [30, 41]. The location and height of the peak
in the specific heat are known to contain information about φ and βc, and by extrapolating the
height and location of the peak, estimates for φ and βc can be obtained.

The specific heat Cn(β) of adsorbing walks is plotted in figure 3 for adsorbing walks in
two dimensions. The error bars in these data are comparable to the size of the plotted points.
These curves should converge as n → ∞ to a limiting specific heat at a rate determined by the
crossover exponent φ. By taking derivatives of the free energy in equation (17), it is expected
that for each n

Cn(β) ∼ nαφf ′′(nφτ). (34)

In this model, our results in equation (33) suggest that φ = 1/2, and hyperscaling relation
(20) then suggests that α = 0. Thus, if corrections to scaling are ignored, then the peaks in
the specific heat may approach a cusp, or grow slowly with n (slower than a powerlaw).

The common point of intersection between the specific heat curves in figure 3 is an
estimate of βc. For values of β < βc, Cn(β) → 0 as n → ∞. Subtracting the curves gives
estimates of the points of intersection. These estimates increase from 0.41 for n = 10 and
n = 20. If curves with n < 50 are ignored, and the smallest bounding box containing the
points of intersection is considered, then

βc = 0.56 ± 0.01 (35)
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0.00 0.15 0.30 0.45 0.60 0.75 0.90

β

0.0

0.5

1.0

1.5

2.0

Cn(β)

Figure 3. The specific heat for adsorbing walks in two dimensions. Error bars have been left away
for clarity. The lengths of the paths increase in steps of 10 from n = 10 to n = 100. If the data
at smaller n are ignored, then all these curves intersect close to β = 0.56. Plotting the points of
intersection and bounding them within a smallest box gives the estimate βc = 0.56 ± 0.01 for the
adsorption critical point. For values of β less than βc , the specific heat decreases to zero, for values
larger than βc it increases with n. This estimate is consistent with the results in equation (33).

0.40 0.45 0.50 0.55 0.60

β

0.15

0.35

0.55

0.75

0.95

1.15

Cn(β)

Figure 4. The area of intersections of the specific heats. If the data corresponding to n < 50 are
ignored, then a bounding box of the intersections can be used to estimate the location of the critical
adsorption point βc as in equation (35). Data corresponding to n = 10 are denoted by • in the
lowest data points for β > 0.50, while data corresponding to n = 100 are the highest points for
β approaching 0.60 and denoted by ◦. Other values of n are represented by points between these
values.

where the error bar is the half-width of the bounding box. This compares well with the results
in equation (33). The area of intersections is magnified in figure 4.

The curves Cn(β) are all functions of the scaled variable nφτ , and if plotted against this,
and scaled to have height 1, they should all collapse to a single curve. In figure 5 we present
such a plot with βc = 0.57 and φ = 1/2.

In the past, the location and height of the peak in the specific heat data were tracked
in order to estimate βc and φ [30, 41]. This method gives values for φ considerably larger
than 1/2 [30]. This observation is confirmed by our data, a least squares fit with nmin = 20
to the heights of the peaks in the specific heats gives αφ = 0.45 ± 0.025 with least square
error acceptable at the 95% level and a 95% statistical confidence interval. If one assumes
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−6 −5 −4 −3 −2 −1 0 1 2 3 4 5
√
n(β βc)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Cn(β)

Figure 5. The specific heat normalized to height 1 and plotted against the combined variable
n1/2(β − βc), where βc = 0.57, and for n = 60, 70, 80, 90 and 100. All the curves collapse, with
increasing n, to a common curve. This can be interpreted as a strong evidence that φ = 1/2.

hyperscaling, then this implies that φ ≈ 0.72, significantly larger than 1/2. In this model,
the traditional method for analysing the specific heat to obtain the crossover exponent clearly
gives an erroneous estimate. The notion that φ = 1/2 is also further strengthened by results
from conformal invariance that suggest φ = 1/2 [3], further putting the result suggested by
analysing the specific heat in doubt.

The value of the critical point βc has also been traditionally determined by tracking the
location of the peaks in the specific heat in figure 3. The location should converge to βc at
a rate proportional to n−φ . If one assumes that φ = 1/2 then a least squares analysis with
nmin = 20 gives

βc = 0.63 ± 0.11 (36)

where the error bar is a 95% statistical confidence interval. This result is consistent with
equation (33), but it is a poor quality estimate of βc. Increase in nmin does not move the result
outside the confidence interval above, and we settle for this value.

Free energy. The approximations fn(β) to the free energy F(β) defined in equation (28) are
plotted in figure 6. Ideally, these data should be analysed using a least square analysis and the
assumed functional form in equation (28). The parameter βn should converge with increasing
n to βc, the critical adsorption point in this model. We analysed the data using a numerical
procedure for minimizing the least squares fit to our data. In this analysis the standard
numerical procedures were unstable. Therefore, we first minimized the error using a Monte
Carlo scheme before switching to numerical derivatives and Newton’s method minimizing
the error. The χ2-statistic of the fit was tracked to determine goodness-of-fit. The fits in
this analysis all failed at the 95% level3, and we adjusted the error bars on our parameters
accordingly (the fit is repeated with error bars inflated to give an acceptable fit at the 95%
level). In practice, this scales up the confidence intervals on the computed parameters by√

χ2
obs

/
χ2

95, where χ2
obs is the observed least squares error, and χ2

95 the χ2-statistic expected at

the 95% level. The results of these fits are listed in table 2. This analysis works reasonably
well if one chooses � = 2. Putting � = 1 gave very poor numerical results, and we did not
further pursue this possibility.

3 A fit is deemed acceptable if the least square error, which is distributed as a χ2 statistic, is acceptable at the 95%
level. Generally, data at the lowest values of n will be the most affected by correction terms, and will be discarded
while the least square error is tracked until an acceptable fit is obtained.
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Figure 6. Estimates of the limiting free energy densities for adsorbing walks in two dimensions
for lengths n = 10 to n = 100 in increments of 10. The curves converge quickly to a limiting free
energy. There is no explanation for the apparent mutual intersections of the curves at β ≈ 0.30.
At this point, it appears that scaling corrections are largely cancelled by the interaction with the
adsorbing line, and one should be able to take numerical advantage of this to determine the growth
constant for self-avoiding walks to high accuracy.

Table 2. Free energy parameters.

n µ φ−1 βn

10 2.618 558(62) 3.326(18) 0.1659(53)
20 2.630 55(15) 3.122(17) 0.2914(43)
30 2.633 04(15) 2.717(23) 0.4061(46)
40 2.633 52(14) 2.464(19) 0.4591(36)
50 2.635 13(14) 2.239(17) 0.4983(31)
60 2.634 85(13) 2.145(14) 0.5165(25)
70 2.635 00(13) 2.044(13) 0.5378(23)
80 2.635 86(13) 1.930(12) 0.5547(20)
90 2.634 85(13) 1.906(11) 0.5596(19)

100 2.635 20(13) 1.911(11) 0.5595(18)

The data in table 2 for µ converge quickly with increasing n, and by n = 50 seem to have
settled down. Taking the result at n = 100 as our best estimate, and taking as a systematic
error the largest absolute difference amongst the estimates at n � 50, the result is that

µ = 2.635 20 ± 0.000 26 ± 0.001 01 (37)

where the format is best estimate ± 95% statistical confidence interval ± systematic error.
This result compares well with µ = 2.638 158 . . . , which is the value of µ obtained by other
means in the literature, see, for example, [2, 10, 19, 20, 35]. Adding the 95% statistical
confidence interval in equation (37) to the systematic error, and rounding the resulting error
bar up gives µ = 2.635 ± 0.002, and this barely excludes the acceptable values of µ.

The points βn increased with n, but stabilized at n = 80 to a value close to 0.56. The
estimate did not move further with increasing n; the estimates at n = 90 and n = 100
are barely excluded from the 95% statistical confidence interval obtained at n = 80. Taking
the average of the results at n = 80, 90 and 100 as our best result, with the maximum difference
between these estimates as a systematic error then gives

βc = 0.5580 ± 0.0040 ± 0.0049 (38)
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Figure 7. Estimates of fn(β) plotted against the rescaled variable nφτ . Error bars are omitted to
produce a clearer graph. In this graph, φ = 0.5 and βc = 0.56. The curves should converge to a
limiting curve, for these small values of n there are still corrections to scaling present.

where the format is best estimate ± 95% statistical confidence interval ± estimated systematic
error. This result is in close agreement with the estimate for βc obtained from the energy
ratios in equation (33). Lastly, the estimates for φ seem to approach a value close to 0.52
when n = 100. In this case the attempted fit is over the entire range of β, and corrections to
scaling away from the critical point affect the estimate of φ. Thus, we consider the estimates
in table 2 to be effective values of φ, unlike the estimate made from energy ratios above.

Rescaling may also be studied using our data. Observe that fn(β) in equation (27) is an
approximation to the free energy. The scaling of logAn(β, 1) in equation (25) and of Fn(β)

in equation (21) then suggests that fn(β) should be a function of the combined variable nφτ

[23, 33]. If the fact that fn(β) → log µ if β < βc and n → ∞ is taken in account, then one
might suppose that

fn(β) − log µ ∼ n−1h(nφτ) + corrections. (39)

Plotting n(fn(β) − log µ) against the rescaled variables nφτ should collapse all these
approximations to a single curve, up to finite size effects. These are plotted in figure 7.

Metric data. The adsorption of a walk is accompanied by a change in the average geometry of
the walk from an object that explores conformations in two-dimensional bulk (on average it
wanders away from the adsorbing plane) to an object that is attached to the adsorbing surface
(in the sense that there is a non-zero density of vertices along the walk that are visits). This
change in geometry characterizes the adsorption transition, and can be explored by studying
the mean square radius of gyration of the walk, or the mean span, or a quantity such as the
height (from the adsorbing plane) of the last vertex in the walk.

It is generally accepted (and known in more than four dimensions [16]), that the scaling
properties of metric quantities are determined by the metric exponent ν. For example, if n is
the length of the walk, then the mean square radius of gyration would scale as〈

R2
n(β)

〉 ≈ Aβn2ν(1 + · · ·). (40)

Additive corrections to scaling are indicated, and can be important for small values of n.
Generally, these corrections are dominated by n2ν for large values of n. Aβ is an amplitude.
Similarly, the scaling of the mean span is expected to be

〈sn(β)〉 ≈ Bβnν(1 + · · ·). (41)
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Figure 8. The metric exponent ν against β as determined by analysing mean square radius
of gyration data of adsorbing walks in two dimensions. Linear least squares fits of the model
log A + 2ν log n + B/n� with n � nmin = 30. The exponent � was fixed at � = 0.5 (∗), � = 1.0
(•) and � = 1.5 (�).

The same exponent, ν, appears in both expressions and is believed to govern the scaling of
any quantity with units of length.

The adsorption transition should be characterized as a discontinuous change in ν as a
function of β. This means that the thermodynamic phase transition is associated with a
rearrangement of the vertices in the walk: in the desorbed phase the walk has two-dimensional
statistics, and its scaling exponents are given by those of the two-dimensional self-avoiding
walk. In this case, Coulomb gas arguments (as well as numerical and other arguments) indicate
that ν = 3/4 [32]. In the adsorbed phase the walk revisits the adsorbing line repeatedly, and
so must cover a distance proportional to n along the adsorbing line. Thus, ν = 1 in that phase.
The changeover from 3/4 to 1 occurs at the critical point βc. Hence, ν is a step-function of β:

ν =
{

3/4 if β < βc

1 if β > βc.
(42)

Estimates of ν at fixed β can be made by linear least squares fits of the data (after taking
logarithms) to log A + 2ν log n + B/n�, where the term B/n� is included to account for
corrections to scaling. The exponent � represents an effective confluent correction to
scaling, and it was fixed in our analysis to 0.5, 1.0 and 1.5. A comparison of the results
would then give an idea of the uncertainty in the estimated value of ν due to inadequacies in
the model.

The fits were performed by discarding data at values of n < nmin, where nmin was taken
equal to 10, 20 and 30 to examine the effects of corrections to scaling on the estimates of ν.
The resulting estimates are plotted in figure 8, where error bars are comparable to the size of
the points plotted (and have been left away for clarity). Within a small error, ν is constant for
β < βc, but it increases quickly to ν = 1 if β > βc.

Closer scrutiny of the data for � = 1 in figure 8 indicates that |ν − 3/4| � 0.01 for all
β � 0.56, but that |ν − 3/4| = 0.0117, . . . , if β = 0.57, and |ν − 3/4| = 0.0163, . . . , if
β = 0.58. For β = 0.59 one obtains |ν − 3/4| = 0.0217, . . . , and thereafter this difference
increases very quickly with increasing β. Thus, the location of the critical point from this mean
square radius of gyration is consistent with the estimate obtained from the thermodynamic
data above.
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Figure 9. The metric exponent ν against β as determined by analysing mean span data of
adsorbing walks in two dimensions. Linear least squares fits of the model log A + 2ν log n + B/n�

with n � nmin = 70. The exponent � was fixed at � = 0.5 (∗), � = 1.0 (•) and � = 1.5 (�).
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Figure 10. The metric exponent ν⊥ against β as determined by analysing the mean height of the
last vertex of adsorbing walks in two dimensions. Linear least square fits with nmin = 60 were
performed to determine ν⊥ as a function of β.

Further metric support can be found by analysing the mean span data. In this case it
appears that the corrections to scaling are more serious than for the mean square radius of
gyration data, and our estimates were only marginally acceptable, even for fits with nmin = 70.
In that case ν ≈ 0.78 in the desorbed phase, slightly bigger than the accepted value of 3/4.
Our results are plotted in figure 9, and analysing ν as for the mean square radius of gyration
data again indicates that βc ≈ 0.57.

Lastly, the height of the last vertex above the adsorbing plane can be analysed. In the
desorbed phase (β < βc), the height should scale with n as nν⊥ where ν⊥ = ν for all β < βc,
but since a positive density of vertices are adsorbed if β > βc, the last vertex is a constant
average distance from the last visit, and so remains close to the adsorbing line. In that case,
one would expect that ν⊥ = 0 if β > βc.

Thus, the height of the last vertex does not increase with n in this phase. The dependence
of ν⊥ on β, calculated this time from the height of the last vertex is in figure 10. In this
case, the location of the critical point is again βc ≈ 0.57, consistent with the results obtained
above. The data for the mean height were analysed with nmin = 60 to obtain fits acceptable
at the 95% level. At β = 0, one obtains ν⊥ = 0.7865 ± 0.0013 with least squares error
E2 = 3.12 on three degrees of freedom, acceptable at the 63% level. This result excludes
3/4 in its statistical confidence interval, but we made no allowance for a systematic error due
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to corrections to scaling present in the data; the model was the two parameter model C0n
ν⊥

and ν⊥ was determined from a linear least squares log–log fit. For β = 1.0, the results are
ν⊥ = −0.0038 ± 0.0046 with E2 = 4.86 acceptable at the 82% level.

3.2. Discussion of two-dimensional adsorbing walks

The crossover exponent of adsorbing walks have been estimated using a number of different
approaches. Conformal invariance approaches show that φ = 1/2 [3]. Monte Carlo studies
tended to produce a slightly larger value than this, for example,

φ = 0.562 ± 0.020 see [30]. (43)

Our results confirm the conformal invariance calculations, showing that φ is indeed most likely
equal to 1/2 for the polymer adsorption problem in two dimensions. The best estimate for φ

is given in equation (33)

φ = 0.501 ± 0.015 (44)

where the error bar is a 95% statistical confidence interval.
The location of the critical point has been determined for a model of adsorbing walks in

the honeycomb lattice [1]. Our calculations have now produced a good estimate for the critical
point in two dimensions, namely βc = 0.573 ± 0.006 in equation (33), by analysing energy
ratios. This result is supported by analysing the specific heat and atmosphere estimates of the
free energy instead. A comparison of the results in equations (33), (35) and (38) produces our
best estimate

βc = 0.565 ± 0.010 in two dimensions (45)

and where we took the average of the three estimates and rounded up the largest 95% statistical
confidence interval to determine the error bar. This result is inconsistent with the estimate

βc = 0.722 ± 0.004 in [30] (46)

it excludes it well outside the stated confidence interval.
The simulation in this paper was not optimized to estimate the metric exponent ν. Instead,

we attempted to compute ν as a function of β, but without considering corrections to scaling
effects in the data. Our results show that ν ≈ 3/4 in the desorbed phase, and that its value
increases quickly to one as the critical point βc is approached. We also analysed the mean
height of the last vertex in the walk above the adsorbing plane, and determined an exponent ν⊥
that measures the length scale in that direction. We found that ν⊥ ≈ ν if β < βc, and ν⊥ = 0
if β > βc, as one would expect if there is a positive density of visits in the adsorbing line in
the adsorbed phase.

3.3. Adsorbing walks in three dimensions

Energy. The energy ratios in equation (31) of the energies of adsorbing walks were also
calculated in three dimensions, and the curves log(Vm/Vn)/ log(m/n) were plotted against
β. In the two-dimensional model, all these curves seemed to intersect at the same point, as
predicted by equation (31) and in figure 2 and allowing us to determine the crossover exponent
φ and the critical point βc.

In three dimensions the locations of intersections remained dependent on the
choices of n and m, and instead we considered intersections between the curve
log(V120/V100)/ log(120/100) and the curves log(Vm/Vn)/ log(m/n) for (m, n) increasing
from (20, 10) to (100, 60). The results are listed in table 3. Observe that the location of
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Table 3. Intersections of energy ratios in three dimensions.

Ratio 1 Ratio 2 βc φ

120/100 20/10 0.299(6) 0.5737(22)
120/100 30/20 0.292(9) 0.5470(42)
120/100 40/20 0.292(9) 0.5468(26)
120/100 50/30 0.292(11) 0.5445(37)
120/100 60/30 0.291(11) 0.5417(28)
120/100 70/40 0.287(16) 0.5191(36)
120/100 80/40 0.287(16) 0.5213(30)
120/100 90/50 0.286(25) 0.5164(38)
120/100 100/50 0.285(28) 0.5116(36)
120/100 100/60 0.283(36) 0.5018(49)

the critical point βc stabilizes quickly to βc ≈ 0.28, but that the estimate of the crossover
exponent, while approaching 1/2 with increasing (m, n), depends on (m, n).

A least squares extrapolation of the data for βc in table 3 against 1/(n + m), where (n,m)

are the sizes of the trees in ratio 2, is acceptable at the 95% level. This shows that

βc = 0.284 ± 0.017 (47)

with 95% statistical confidence intervals. As a further check, assume instead that convergence
of βc is at a rate proportional to 1/

√
n + m. In that case, a least squares analysis of the data

in table 3 gives βc = 0.276 ± 0.029, within the confidence interval of the result above. Thus,
we can accept the estimates in equation (47) for βc. This estimate is consistent with most of
the estimates in table 3; a simple average over these results also gives an estimate within the
error bars of equation (47).

The estimates of φ in table 3 seem to approach 1/2. However, an acceptable least
squares extrapolation could not be found. Instead, the location of the critical point at
βc = 0.284 ± 0.017 was used to estimate φ. The curve log(Vm/Vn)/ log(m/n) should
pass through the point (βc, φ). Fixing β = βc = 0.284, and then reading φ from

log
(

Vm

Vn

)
log(m/n)

= φ at β = βc (48)

should give good estimates for φ. These estimates are listed in table 4 below. The confidence
intervals in φ were calculated by repeating the analysis by taking values of βc and of Vn at the
limits of their confidence intervals in our data and in equation (47).

A least squares extrapolation of φ against 1/(n + m) gives an acceptable fit to all the data
in table 4. In that case, the result for φ is

φ = 0.5005 ± 0.0036 (49)

where the weighted least squares error is E2 = 6.83 on 13 degrees of freedom, acceptable at
the 10% level, and the error bar is a 95% statistical confidence interval.

Specific heat. The specific heat Cn(β) is plotted in figure 11 for adsorbing walks in three
dimensions. The intersections between these curves can again be used to estimate the value
of the critical point, and the area surrounding the intersections is magnified in figure 12.
Assuming that the specific heat scales with n as in equation (34), where φ = 1/2, one may
guess that the location of the intersections between the curves converges to the critical point
at the rate n−φ . Determining the intersections, and extrapolating by using a least squares
analysis, then shows that βc = 0.340 ± 0.008 if nmin = 10 with least squares error E2 = 4.8
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Figure 11. The specific heat for adsorbing walks in three dimensions. Error bars have not been
shown for clarity. The lengths of the paths increase from the lowest peak at n = 10 in steps
of 10 to n = 100, and then to n = 120. In this model the points of intersection between the
curves increase with increasing n. Extrapolating the intersections against n−φ with φ = 1/2 gives
βc = 0.33 ± 0.02. This is incontrast to the case of two-dimensional adsorbing walks, where the
intersections quickly become stationary, and one may estimate the critical point by bounding them
in a smallest box. For values of β < βc the curves decrease to zero, and for β > βc , the peaks
increase at the rate of nαφ to a limiting specific heat.

Table 4. Estimates of φ from energy ratios.

(m, n) in
equation (48) φ

(20,10) 0.5486(23)
(30,20) 0.5288(42)
(40,20) 0.5268(26)
(50,30) 0.5231(37)
(60,30) 0.5204(28)
(70,40) 0.5109(36)
(80,40) 0.5107(30)
(90,50) 0.5088(36)
(100,50) 0.5078(36)
(100,60) 0.5060(49)
(100,80) 0.513(12)
(120,70) 0.5100(52)
(120,80) 0.5100(71)
(120,90) 0.505(11)
(120,100) 0.507(18)

on nine degrees of freedom. This estimate changes to βc = 0.326 ± 0.011 if nmin = 20
with least squares error E2 = 2.0 on eight degrees of freedom. Subsequent increases in nmin

does not change the estimate outside its error bars. This estimate is higher than obtained in
equation (47) above.

Assuming instead that convergence of βc is at a rate proportional to n−1 gives
βc = 0.284 ± 0.009 if nmin = 10 with least square error E2 = 2.12 on nine degrees of
freedom. If nmin = 20 in this case, then the analysis gives βc = 0.286 ± 0.007 with E2 = 2.0
on eight degrees of freedom. In this case the estimate did not move with increasing nmin.
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Figure 12. The intersections of specific heat data magnified. Extrapolating the intersections
against n−φ gives the estimate βc = 0.33 ± 0.02 for the critical point. Unlike the case for two-
dimensional adsorbing walks, a box bounding the intersection does not give a credible estimate
of βc .
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Figure 13. The specific heat of adsorbing walks in three dimensions normalized to height 1 and
plotted against the scaled variable nφ(β − βc), where φ = 1/2 and βc = 0.33. All these curves
should collapse with increasing n to a single universal curve, however, such convergence appears
to be very slow. Lowering βc to its best value in equation (47) does not improve the result. It
appears that corrections to scaling in the specific heat disappear only slowly with increasing n.

These results suggest that there is a large systematic error present in estimates of βc from
the specific heat data. In particular, one can plot the specific heat, normalized to height 1,
against nφ(β − βc); the data should collapse to a single underlying universal curve. Choosing
βc = 0.33 produces figure 13; smaller values of βc (say around 0.29) produce curves that are
even further apart. We independently verified this observation by repeating our runs using
a flat histogram version of the pruned enriched Rosenbluth method [34]; we obtained an
identical graph. This larger value of βc is more consistent with the specific heat data, rather
than the smaller estimate obtained in equation (47) from energy ratios. We conclude that poor
estimates of βc and φ are obtained by analysing specific heat data in this model.

Further analysis can be done by considering the location of peaks in the specific heat data.
The locations of these peaks should converge with increasing n to βc at a rate determined by
n−φ . However, our data indicate that over the range of values of n considered, the positions
of the peaks did not move significantly. At n = 10, the peak was located at β = 0.35, and
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Figure 14. Estimates of fn(β) for adsorbing walks in three dimensions for lengths n = 10 to
n = 100 in increments of 10, and for n = 120. The curves converge quickly to a limiting shape,
and all seem to intersect close to β = 0.21. At this point, it appears that scaling corrections
are largely cancelled by the interaction with the adsorbing line, and one should be able to take
numerical advantage of this to determine the growth constant for self-avoiding walks to high
accuracy. However, numerical analysis shows that the critical point for adsorption is likely larger
than this.

Table 5. Free energy parameters in 3d.

n µ φ−1 βn

10 4.560 76(24) 2.4978(64) 0.032 91(23)
20 4.615 44(33) 2.494(12) 0.1018(28)
30 4.635 51(30) 2.356(11) 0.1531(22)
40 4.644 51(27) 2.2060(97) 0.1932(18)
50 4.652 82(27) 2.1673(91) 0.2037(16)
60 4.656 32(26) 2.0886(85) 0.2230(14)
70 4.660 37(26) 2.0555(87) 0.2312(14)
80 4.661 64(25) 2.0020(76) 0.2408(13)
90 4.664 37(24) 1.9757(76) 0.2458(12)

100 4.666 72(25) 1.9461(75) 0.2495(12)
120 4.669 94(24) 1.8975(68) 0.2560(10)

n = 20 at β = 0.40, and at n = 120 at β = 0.38. Convergence to βc is very slow, and
extrapolating from specific heat data to βc may be problematic in this model.

An attempt to analyse the peak heights in Cn(β) to estimate αφ in equation (34) was
equally unsuccessful. Since we expect that α = 0 in this model, the heights of the peaks may
increase at a rate inconsistent with a power-law, and so assuming such a form may well lead
to wrong estimates of φ.

Free energy. The free energies of adsorbing walks in three dimensions can be approximated
by fn(β) using atmospheric data as in equation (27). These approximations are plotted in
figure 14. As in two dimensions, one may assume that equation (28) be fitted to data in order
to estimate µ, βc and an effective value for φ. Acceptable fits could be performed when
taking N = 2 in equation (28), similar to the analysis in two dimensions. In this analysis
the weighted least squares error was first minimized by a Monte Carlo implementation of
simulated annealing, and then by applying Newton’s method using numerical derivatives
when convergence has taken us close to the minimum. The results are listed in table 5.
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Figure 15. Rescaled estimates of fn(β) plotted against nφ(β − βc). Error bars were omitted to
produce a better graph. In this graph, φ = 0.5 and βc = 0.29. The curves should converge to a
limiting curve; for the small values of n there are still corrections to scaling present.

The estimates of µ in table 5 appears to have converged to at least two decimal places
by n = 120. Choosing that value at n = 120 as our best estimate, and considering absolute
differences for n � 60 as an indication of a systematic error, we obtain the estimate

µ = 4.670 ± 0.0006 ± 0.013 (50)

where the format is best estimate ± 95% statistical confidence interval ± estimated systematic
error.

Assuming that βn = βc + Cn−1, and performing weighted least squares fits to the data in
the last column of table 5 give an acceptable fit if nmin = 50, in which case

βc = 0.293 ± 0.004 ± 0.005 (51)

and the least square error is acceptable at the 88% level, and with a stated 95% statistical
confidence interval and a systematic error estimated by repeating the least squares analysis
with nmin = 60. Assuming the model βn = βc + Cn−1/2 does not give an acceptable fit at
nmin = 50, and also produces the larger value of βc ≈ 0.35.

The estimate in equation (51) agrees with the estimate obtained from the energy ratios in
(47), but excludes the values of φ determined by analysing specific heat data, and can be seen
by extrapolating φ−1 in table 5.

In figure 15 the rescaled free energies n(fn(β) − µ) are plotted against
√

n(β − βc) with
βc = 0.29. The curves collapse to a single curve, and rescaling with φ = 1/2 and βc = 0.29
underscores the results obtained in equations (48) and (51).

Metric data. In three dimensions the adsorption of the walk onto an adsorbing plane should be
accompanied by a change in the averaged metric properties of the walk. Since there is a density
of visits in the adsorbing plane if β > βc, and a repulsion between these due to self-exclusion,
one expects the walk to acquire the statistics of a two-dimensional self-avoiding walk. Hence,
in the adsorbed phase, the metric exponent should take its two-dimensional self-avoiding walk
value: ν = 3/4. In the desorbed phase the walk will have the statistics of three-dimensional
self-avoiding walks in bulk, and so ν = 0.578 . . . [4, 24]. In other words, in this model it is
expected that

ν =
{

0.578 . . . if β � βc

3/4 if β > βc.
(52)

We assumed the model log〈R2〉 = C0 + 2ν log n + αn−� describes the mean square radius of
gyration data. The confluent correction exponent � was assumed to take values � = 0.5, 1.0
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Figure 16. The metric exponent ν against β as determined by analysing mean square radius of
gyration data of adsorbing walks in three dimensions. Linear least squares fits with nmin = 30
were performed to determine ν as a function of β. The quality of the fits deteriorated at large
values of β. The analysis was done by assuming that the confluent correction to scaling exponent
takes values � = 0.5 (�), 1.0 (•) and 1.5 (∗).
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Figure 17. The metric exponent ν against β as determined by analysing mean span data of
adsorbing walks in two dimensions. Linear least squares fits with nmin = 30 were performed to
determine ν as a function of β. The quality of the fits were generally not good. The analysis was
done by assuming that the confluent correction to scaling exponent takes values � = 0.5 (�), 1.0
(•) and 1.5 (∗).

and 1.5, respectively; the difference in the three sets of results is an indication of a systematic
error due to uncertainties in the model. We plot our results in figure 16.

Closer scrutiny of the data in figure 16 indicates that |ν − 0.58| � 0.02 for all β � 0.3,
but this increases quickly for larger β. Thus, the location of the critical point from this mean
square radius of gyration is close to the estimate obtained above from the thermodynamic data.

Further metric support for the location of βc can be found by analysing the mean span data
(see figure 17). The model was again log〈sn〉 = C0 + ν log n + αn−�, including a confluent
correction to scaling, and where we take � = 0.5, 1.0 and 1.5 in three attempts to find good
fits to our data. In this case it appears that the corrections to scaling are more serious than for
the mean square radius of gyration data, and our estimates were only marginally acceptable,
even for fits with nmin = 30. In that case ν ≈ 0.60 in the desorbed phase when � = 1.0,
slightly larger than the accepted value of 0.58. Reading of the critical point gives βc ≈ 0.3, as
before.



6896 E J J van Rensburg and A R Rechnitzer

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

β

0.00

0.20

0.40

0.60

0.80

1.00

ν⊥(β)

Figure 18. The metric exponent ν⊥ against β as determined by analysing the mean height of the
last vertex of adsorbing walks in two dimensions. Linear least square fits with nmin = 70 were
performed to determine ν⊥ as a function of β.

One may similarly analyse the height above the adsorbing plane of the last vertex in the
walk. Similar to two dimensions, one expects that the height to increase proportional to nν⊥

where ν⊥ = ν in the desorbed phase with β < βc, and ν⊥ = 0 in the adsorbed phase (when
β > βc). We show our results in figure 18; these fits did not control for corrections to scaling.
Instead, we took nmin = 70 and used a two-parameter linear model fitting the logarithm of the
height of the last vertex to C0 + ν⊥ log n.

3.4. Discussion of three-dimensional adsorbing walks

Estimates of the crossover exponent φ for adsorbing walks in the three-dimensional cubic
lattice can be found in [8, 17, 31]. In particular, estimates are as follows:

φ = 0.58 ± 0.03 in [8]

φ = 0.530 ± 0.007 in [31]

φ = 0.496 ± 0.004 in [17].

(53)

In this paper we improved on these estimates by determining φ from energy ratios obtained
by multiple Markov sampling. Our best value for φ is

φ = 0.5005 ± 0.0036 (54)

comparable in accuracy to the result of Hegger and Grassberger in [17], and consistent with the
belief that φ = 1/2. This result barely excludes the Hegger and Grassberger value outside its
95% statistical confidence interval. However, the results by Eisenriegler et al (φ = 0.58±0.03,
[8]) and by Meirovitch and Livne (φ = 0.530 ± 0.007 [31]) are ruled out by this result. The
much larger values obtained in earlier studies are consistent with our observations that analysis
of the specific heat gives unreliable estimates of φ and βc. These results strongly suggest that
φ is indeed most likely equal to 1/2 for the polymer adsorption problem in three dimensions.

Our calculations have now produced a good estimate for the critical point in three
dimensions. Estimates from energy ratios in equation (47) and by directly analysing the
free energy (see equation (51)), agree within error bars, and we take their average as our best
estimate for βc

βc = 0.288 ± 0.020 in three dimensions. (55)

The error was determined by rounding up the largest error bar of two estimates. This result
compares well with other estimates of βc in the literature. In particular,
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βc = 0.291 ± 0.001 in [31]

βc = 0.294 ± 0.014 in [37]

βc = 0.296 ± 0.016 in [37].

(56)

The results by Vrbová and Procházka ([37]) are consistent with our estimate, but our result is
outside the confidence interval of the results in [31], indicating that the confidence interval in
this study may have been underestimated.

The simulation in this paper was not optimized to estimate the metric exponent ν. Instead,
we attempted to compute ν as a function of β, but without considering corrections to scaling
effects in the data. Our results show that ν ≈ 0.60 in the desorbed phase, and that its value
increases quickly to 0.75 in the adsorbed phase. We also analysed the mean height of the last
vertex in the walk above the adsorbing plane, and determined an exponent ν⊥ that measures
the length scale in that direction. We found that ν⊥ ≈ ν if β < βc, and ν⊥ = 0 if β > βc, as
one would expect if there is a positive density of visits in the adsorbing line in the adsorbed
phase.

4. Conclusions

It can be shown that there is a (thermodynamic) adsorption transition of walks in a
d-dimensional half-space onto a (d−1)-dimensional hyperplane [15]. The crossover exponent
in all models of adsorbing polymers is believed to be equal to 1/2. In this paper we examined
this using a model of self-avoiding walks in two and in three dimensions. In these low
dimensions the transition is accompanied by a change in the metric statistics of the walks: the
metric exponent ν changes through the transition to a new value. In high dimensions d > 4
there is still an adsorption transition, but since self-avoiding walks are now described by a
mean field theory, it is the case that ν = 1/2 in both the adsorbed and desorbed phases.

In this paper we have examined in particular the thermodynamic nature of the adsorption
transition. We estimated crossover exponents and locations of the critical adsorption point
of adsorbing self-avoiding walks in two and in three dimensions, and our best estimates are
listed in equations (33), (45), (49) and (55). Generally, thermodynamic quantities should
also rescale along the β-axis with increasing length n of the walk proportional to nφ . In two
dimensions we demonstrated this rescaling for both the atmospheric approximations to the
free energy and for the specific heat in figures 5 and 7. In three dimensions the rescaling
is also demonstrated for the free energy in figure 15, but strong corrections to scaling in the
specific heat complicates the picture in that case (figure 13). These results strongly support
the tricritical hypothesis in describing the adsorption transition in this model. Our data also
suggest that analysis of the specific heat data in three dimensions are fraught with difficulty.
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